

 EURASIA Journal of Mathematics, Science and Technology Education, 2018, 14(10), em1591
 ISSN:1305-8223 (online)
OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/93190

© 2018 by the authors; licensee Modestum Ltd., UK. This article is an open access article distributed under the
terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

 rbasnet@coloradomesa.edu lpayne@coloradomesa.edu
 tenzin.doleck@mail.mcgill.ca (*Correspondence) david.lemay@mail.mcgill.ca
 paul.bazelais@mail.mcgill.ca

Exploring Bimodality in Introductory Computer Science
Performance Distributions

Ram B Basnet 1, Lori K Payne 1, Tenzin Doleck 2*, David John Lemay 2, Paul Bazelais 2
1 Colorado Mesa University, Grand Junction, Colorado, USA

2 McGill University, Montreal, Quebec, CANADA

Received 7 April 2018 ▪ Revised 19 June 2018 ▪ Accepted 21 June 2018

ABSTRACT
This study examines student performance distributions evidence bimodality, or
whether there are two distinct populations in three introductory computer science
courses grades at a four-year southwestern university in the United States for the
period 2014-2017. Results suggest that computer science course grades are not
bimodal. These findings counter the double hump assertion and suggest that proper
course sequencing can address the needs of students with varying levels of prior
knowledge and obviate the double-hump phenomenon. Studying performance helps
to improve delivery of introductory computer science courses by ensuring that courses
are aligned with student needs and address preconceptions and prior knowledge and
experience.

Keywords: computer science performance, coding, programming, double hump,
grade distribution, bimodal distribution, unimodal distribution

BACKGROUND
In recent years, there has been a resurgence of interest in the practice of coding (Kafai & Burke, 2013), with many
pushing for making it a core competency for students (Lye & Koh, 2014). There are inherent challenges in learning
to code evidenced by high failure and dropout rates in programming courses (Ma, Ferguson, Roper, & Wood, 2011;
(Qian & Lehman, 2017; Robins, 2010). These crucial issues go to the core of teaching coding (Robins, Rountree, &
Rountree, 2003; Watson & Li, 2014) and demand our attention given the growing need for coders across a broad
range of careers as “seven million job openings in 2015 were in occupations which value coding skills” (Burning
Glass, 2016, p. 3; Dishman, 2016; Thompson, 2018). The computer science education community has recognized the
importance of better understanding students’ performance in computer science courses for improving student
outcomes (Alturki, 2016; Ott, Robins, Haden, & Shephard, 2015; Zingaro, 2015), and many have noted a bimodal
distribution of grades in computer science (Corney, 2009; Dehnadi & Bornat, 2006; Robins, 2010). These researchers
suggest that there are two distinct groups of computer science students, one stronger and one weaker, that can even
be observed in distributions of learning outcomes in introductory computer science courses.

Over a decade ago, Dehnadi and Bornat (2006) advanced the notion of double hump, positing that “there at
least two populations in initial programming courses” (Dehnadi & Bornat, 2006, p.16). Or as Robins (2010) put it,
“the typical introductory programming (CS1) course has higher than usual rates of both failing and high grades,
creating a characteristic bimodal grade distribution” (p.37). However, supporting evidence remains inconclusive
and this contention remains rather controversial to date as it implies that students either get it or they don’t. As
Dehnadi and Bornat (2006) reasoned, “programming teaching is useless for those who are bound to fail and
pointless for those who are certain to succeed” (p. 1). In the computer science education literature various
explanations for the purported bimodal grade distribution have been offered, including: the geek gene hypothesis,
prior knowledge (students with and without experience), stumbling point hypothesis, threshold concepts, learning
edge momentum effect, and poor assessment strategies (Ahadi & Lister, 2013; Lister, 2010; Patitsas, Berlin, Craig,

https://doi.org/10.29333/ejmste/93190
http://creativecommons.org/licenses/by/4.0/
mailto:rbasnet@coloradomesa.edu
mailto:lpayne@coloradomesa.edu
mailto:tenzin.doleck@mail.mcgill.ca
mailto:david.lemay@mail.mcgill.ca
mailto:paul.bazelais@mail.mcgill.ca

Basnet et al. / Exploring Bimodality in Introductory Computer

2 / 7

& Easterbrook, 2016; Robins, 2010). Roughly speaking, these hypotheses are either related to student or course
characteristics. Those related to student characteristics state that some students have an ability for programming,
or that students’ prior experience and knowledge favorably predispose them to programming. Related to course
characteristics, researchers have suggested that some concepts have specific antecedents to understanding, and lack
of those prerequisite concepts may act as threshold or stumbling point to further progress, disadvantaging those
that do not possess the requisite knowledge or skill to advance with the rest of the group.

An assertion such as the one by Dehnadi and Bornat’s (2006) was bound to prompt a reaction: the work piqued
the interest of computer science education researchers, and set in motion two general channels of studies that have
tried to both replicate and explicate the idea of double hump in computer science. The first stream of work involves
using the aptitude test proposed by Dehnadi and Bornats (2006) to illustrate the double hump phenomenon. Much
of the research has failed to find support for the aptitude test (e.g., Caspersen, Larsen, & Bennedsen, 2007; Lung,
Aranda, Easterbrook, & Wilson, 2008; França, da Cunha & da Silva, 2010; Wray, 2007).

The second stream of work has focused on examining performance data to ascertain the existence of the double
hump. The research reported in this article falls in this second stream of work. Several ensuing contributions are
worth highlighting. Robins (2010) explored simulated grade distribution by running a simulation study to provide
an account (learning edge momentum effect) for the bimodal grade distributions. Höök and Eckerdal (2015)
provided evidence for bimodal distribution of the final grades in an introductory programming course, but noted
that it “depends on the correction procedure rather than the distribution of the results of the exam” (p. 79).

Ahadi and Lister (2013), who examined four tests from an introductory programming course, highlighted the
complexity of accounting for the bimodal grade distribution and noted that: “advocates of the various hypotheses—
Geek Genes, Prior Knowledge, Stumbling Points and Learning Edge Momentum —can all find support for their
respective hypotheses, in aspects of the data in this paper” (p. 126). Using 778 distributions of final course grades,
Patitsas, Berlin, Craig, and Easterbrook (2016) found that only 5.8% of the distributions passed tests of
multimodality. Moreover it is common to find general statements and anecdotes in the literature about the
bimodality phenomenon without relevant evidence. For example, Corney (2009) noted that: “Faculty data typically
has shown a bimodal distribution of results for students undertaking introductory programming courses with a
high proportion of students receiving a high mark and a high proportion of students receiving a low or failing
mark” (p. 1). The anecdotal statement is accepted on face value and no further supporting evidence is provided.
Furthermore, Patitsas, Berlin, Craig, and Easterbrook (2016) noted that prior work on the bimodality distribution
phenomenon in CS performance has generally lacked robust statistical testing, with many resorting to visual
inspections of distributions to assess bimodality (Lister, 2010). Hence, there is a need to further understand the
topic by conducting robust statistical testing on actual performance data from computer science courses. Finally, a
recent development comes in the form of a retraction notice from one of the co-authors of the original article, who
acknowledged errors in the original paper (Bornat, 2014); nevertheless, the debate on the topic continues.

The present research conducted robust statistical tests on student performance data from three introductory
courses in computer science in an effort to enrich our understanding of the purportedly bimodal distribution in
achievement scores in the context of computer science.

Present Study
Most of the existing evidence for and against the double hump comes from the test for programming aptitude

proposed by Dehnadi and Bornat (2006). A smaller set of studies uses actual performance data such as final grades
from computer science courses (Patitsas, Berlin, Craig, & Easterbrook, 2016). Computer science course performance
data provide a real-life context for examining the double hump phenomenon.

To gain better insight into the phenomenon, the present retrospective exploratory study drew on data overall
course grade from three computer science courses (CSCI 110, CSCI 111, and CSCI 112) over a three-year period
from 2014-2017 at a southwestern university in the United States to answer the following research question:

Does the phenomenon of double hump exist in computer science course grades?

Contribution of this paper to the literature

• Performance distributions from three introductory computer science courses reveal unimodal distributions
contrary to the conjecture of bimodality of student performance distribution.

• High skewness and kurtosis of performance distributions are characteristic of criterion-based rather than
norm-referenced assessments.

• Faculty course sequence planning can address the needs of two distinct student populations by instituting
an optional course for those with no prior programming experience.

EURASIA J Math Sci and Tech Ed

3 / 7

To address the overarching research question, we analyzed the data in the spirit of Patitsas et al. (2016) and
provide the following statistics: kurtosis, skewness, Shapiro-Wilk Test of Normality, and Hartigan’s dip test statistic
(Hartigan & Hartigan, 1985) for unimodality/multimodality. The values for kurtosis, skewness, Shapiro-Wilk Test
of Normality were calculated using SPSS. The dip test statistic was calculated using the R package dip test.

CONTEXT: DESCRIPTION OF COURSES

CSCI 110: Beginning Programming: Python
CSCI 110 (3 credit hours) is an introduction to programming course with a prerequisite of MATH 110 (College

Algebra) or Math 119 (Pre-Calculus). Students from various disciplines take this course as an introduction to the
field of Computer Science. Additionally, computer science students with no prior programming experience or those
who do not meet the MATH 110 prerequisite for CSCI 111 course typically take this course. The course covers some
basics of Linux and students learn to code in the Linux environment using Python as the programming language
to learn basic programming concepts such as data types, variables, functions, automated testing, I/O, loops,
conditionals, and Python built-in libraries and data types. CSCI 110 is not a required or core-course for Associate
or Bachelor’s Degrees in Computer Science. One section of this course is offered every semester with a maximum
student enrollment of 30. There’s an optional lab (1 credit hour) component that we excluded from this study.
Weekly homework is assigned to assess and enforce the concepts covered. Some professors assign problems from
open.kattis.com and submit solutions to Kattis online judge for testing. This practice has been studied and it has
been found that most students are very engaged with Kattis and they continue to use Kattis beyond the classroom
(Basnet, Doleck, Lemay, & Bazelais, 2018). In some cases, short quizzes and tests are also given to further assess
students’ understanding of the concepts and retention of the materials. Typically, students are assigned an
individual final project towards the end of the semester.

CSCI 111: Foundation of Computer Science
CSCI 111 (4 credit hours) is the foundational course that covers problem solving techniques emphasizing

modularity, abstraction, analysis, and correctness of algorithm design. Using C/C++ language as a tool, topics
covered include data types, control structures, I/O, functions, struct, and some object-oriented concepts. MATH
113 (College Algebra) or CSCI 110 is a prerequisite for this course. CSCI 111 is a required core-course for Computer
Science majors. Other disciplines, such as Mathematics and Engineering, may also require their students to take
this course. Depending on the demand for the semester, 2 to 3 sections (max 35 students) of CSCI 111 are offered
every semester. About 5-7 quizzes and 6-8 homework assignments are given throughout the semester to assess
students’ learning. Either a final project or a comprehensive exam is assigned towards the end of the semester.
Assignments typically cover problems that emphasize the concepts covered during the course. Similar to CSCI 110,
some professors assign problems from open.kattis.com in this course as well.

CSCI 112: Data Structures
CSCI 112 (4 credit hours) is the continuation of CSCI 111. The course emphasizes algorithm design and analysis,

procedural abstraction, data abstraction, and quality programming style. Topics covered include distinction
between dynamic and static variables; run-time exception handling; automated testing; various implementations
of elementary stacks; queues, trees and linked lists; comparison of recursive and iterative algorithms; program
correctness; and, hierarchical design principles. Depending on student enrollment, 1 to 2 sections (max 35 students)
are offered every semester. About 6-8 homework assignments and 3-5 tests are given throughout the semester to
emphasize students’ learning and assessment. Some professors assign problems from Kattis in this course as well.

PARTICIPANT PROFILE
The responsible Institutional Review Board approved the current study. Anonymized data were obtained from

the registrars after obtaining ethical approval for the study. The summary of the data (age, gender, ethnicity, and
course load) is provided below.

Table 1. Age Distribution of Students
 Course Taken

Age Group CSCI 110 CSCI 111 CSCI 112 Total
24 or younger 63 75% 353 83% 176 80% 592

25 or older 21 25% 72 17% 43 20% 136
 84 425 219 728

Basnet et al. / Exploring Bimodality in Introductory Computer

4 / 7

ANALYSIS
Skewness and kurtosis statistics and frequency distributions, reported below, were inspected for evidence of

bimodality. Contrary to the double hump assertion, the course grade distributions for the computer science courses
in the present study were largely unimodal. In the dataset presented above, 90% of the cases displayed unimodal
grade distributions. The findings are similar to Patitsas et al. (2016), who found that, for the final computer science
grades, about 5.8% of cases were bimodal distributions. Additionally, we found that a large proportion of the grade
distributions were normal, also in line with the findings of Patitsas et al. (2016).

Table 2. Gender of Students
 Course Taken

Gender CSCI 110 CSCI 111 CSCI 112 Total
Male 69 82% 347 82% 190 87% 606
Female 15 18% 78 18% 29 13% 122

 84 425 219 728

Table 3. Ethnicity of Students
 Course Taken

Ethnicity CSCI 110 CSCI 111 CSCI 112 Total
Asian 3 4% 6 1% 7 3% 16
Pacific Islander 0 0% 3 1% 1 0% 4
African American 0 0% 7 2% 3 1% 10
Hispanic 14 17% 62 15% 28 13% 104
Native American 2 2% 0 0% 0 0% 2
Multi-Racial 2 2% 13 3% 6 3% 21
White 55 65% 308 72% 160 73% 523
Non-Resident Alien 7 8% 15 4% 7 3% 29
Unknown 1 1% 11 3% 7 3% 19

 84 425 219 728

Table 5. Statistical Results For CSCI 110
 Hartigan’s Dip Test

Semester Kurtosis Skewness Shapiro-Wilk Normality Test D p-value
Fall 2014 2.399 1.228 Normal 0.1 0.9029
Spring 2015 0.868 0.552 Normal 0.1 0.9029
Fall 2015 -2.407 -0.166 Normal 0.2 < 2.2e-16
Spring 2016 4.833 2.185 Not Normal 0.1 0.9029
Fall 2016 2.000 -1.145 Normal 0.1 0.9029
Spring 2017 4.028 1.981 Not Normal 0.1 0.9029

Table 4. Course Load of Students
 Course Taken

Student Load CSCI 110 CSCI 111 CSCI 112 Total
Fulltime (12+ hrs) 71 85% 385 91% 202 92% 658
Parttime (<12 hrs) 13 15% 40 9% 17 8% 70

 84 425 219 728

Table 6. Statistical Results For CSCI 111
 Hartigan’s Dip Test

Semester Kurtosis Skewness Shapiro-Wilk Normality Test D p-value
Spring 2014 -0.598 -0.183 Normal 0.1200 0.5122
Fall 2014 1.055 0.513 Normal 0.1000 0.9029
Spring 2015 2.738 1.628 Normal 0.1200 0.5122
Fall 2015 2.854 1.498 Normal 0.1000 0.9029
Spring 2016 -1.137 0.383 Normal 0.1333 0.4077
Fall 2016 0.738 0.259 Normal 0.1000 0.9029
Spring 2017 2.283 -1.314 Normal 0.1000 0.9029

EURASIA J Math Sci and Tech Ed

5 / 7

DISCUSSION
In the present study, we found no support for the bimodal distribution. Indeed, what is striking is the strength

of the unimodality in the distributions. The few non-normal distributions have elevated values of kurtosis and were
positively skewed, suggesting a tight distribution around a unique mean. Non-normality does not imply
multimodality, and indeed, these distributions do not significantly depart from unimodality on Hartigan’s dip test.
The elevated values of kurtosis suggest low variance in scores and the prevalence of positive skewness in CSCI 110
and CSCI 111 suggests more students are meeting or exceeding course expectations in the first two courses.
Whereas performance in CSCI 112 exhibits a trend toward less kurtosis and skewness, and consequently, more
normal distributions.

Rather than supporting the bimodal hypothesis, these data describe a situation where performance in CSCI 110
and CSCI 111 does not appear sufficiently discriminating between weaker and stronger students, hence the
prevalence of positive skewness and high-levels of kurtosis in grade distributions. Positive skewness in
performance is representative of situations where more grades are clustered above the mean than below. This is
common in criterion-referenced situations where course performance is a function of completing assignments and
test items are chosen for content-coverage but not for discriminating between different performance levels (Brown,
2014; Dunn, Perry, & Morgan, 2002; Sadler, 2005). We observe more normality in the later CSCI 112 as this course
may offer more conceptual difficulty than its two prerequisite courses and may be naturally more discriminating.

Such results may not be surprising to faculty policymakers as the presence of the non-compulsory introductory
course CSCI 110 suggests that the course was created to address the gap in prior knowledge and skill possessed by
the highly varied student population that subscribe to these courses. Students in Mathematics and Science are
expected to already possess the minimum competence addressed by the first introductory course and are not
required to take the first course on fundamentals. Indeed, this first non-compulsory course can be seen as implicitly
addressing the needs of two different groups of students taking introductory computer science courses. While it
would be erroneous to claim the bimodal distribution based on the implementation of a preliminary course on
computer science fundamentals, it does admit the recognition of different groups of students entering with different
needs. We note that comparatively few students (n = 84) take the non-compulsory CSCI 110 while a majority takes
CSCI 111 (n =425), but only half as many continue to CSCI 112 (n = 219). Thus, CSCI 111 serves as a threshold
course, nearly half of the students that take CSCI 111 do not continue to CSCI 1112. Students choose computer
science for myriad reasons, and the course structure reflects that reality. Many students that take an introductory
course do not go on to major in that discipline. Whereas criterion-referenced examinations are increasingly common
with the rise in competency-based evaluation frameworks, using norm-referenced assessments in addition to
criterion-referenced assessments could serve as motivating factor, as the prevalence of competitive coding
platforms suggests. Indeed, Kattis includes such a gamified aspect to its coding challenges too (Basnet et al., 2018).
Studying performance helps to improve delivery of introductory computer science courses by ensuring that courses
are aligned with student needs and address preconceptions and prior knowledge and experience.

The present analysis supports the view that introductory computer science does provide some challenges as
students exhibit a range of ability and interests upon entering the introductory computer science course sequence.
However, the high-levels of kurtosis and skewness suggest that a more tightly coupled and carefully planned
course sequence may help students progress by guiding them to understanding the more difficult concepts through
targeted norm-referenced assessment. It is vital that all students have the prerequisite conceptual understanding
as well as the basic knowledge and skill covered in a first computer science fundamentals course. This may be best
achieved by instituting a norm-referenced model with software like Kattis (Basnet et al., 2018) to evaluate
understanding in addition to criterion-based performance measures.

Table 7. Statistical Results For CSCI 112
 Hartigan’s Dip Test

Semester Kurtosis Skewness Shapiro-Wilk Normality Test D p-value
Spring 2014 -1.418 -0.117 Normal 0.1333 0.4077
Fall 2014 2.399 -1.228 Normal 0.1000 0.9029
Spring 2015 -0.846 0.364 Normal 0.1667 0.1645
Fall 2015 -2.763 -0.134 Normal 0.1571 0.2286
Spring 2016 3.040 1.702 Normal 0.1000 0.9029
Fall 2016 -0.612 -0.512 Normal 0.2000 < 2.2e-16
Spring 2017 1.282 0.486 Normal 0.1000 0.9029

Basnet et al. / Exploring Bimodality in Introductory Computer

6 / 7

LIMITATIONS AND FUTURE DIRECTIONS
Changes occurred over the time of the study which could have confounded the results. MATH 113 was changed

from a prerequisite to a co-requisite for CSCI 111 for the last several years, which might have allowed more weakly
prepared students into the class. However, that would be expected to increase the number of students in a lower
hump, but it did not. Second, an influx of students who had taken an AP Computer Science course occurred during
the study (as a result of grant money encouraging that offering). That change could have encouraged more low
grades for CSCI 112, while encouraging higher grades in CSCI 111 and CSCI 110. While those do not appear to have
happened, they were not tracked for this study.

Also, prior to the collection of this data began, major efforts were incorporated in the computer science courses
to increase retention for the major. These changes included using peer tutoring in labs outside of class, including
one or two lab aides from the more advanced computer science majors to help students on lab days—increasing
positive interactions and satisfaction for students, and group advising to help students choose the best courses for
their background and ability. Better placement and more readily available help may have decreased the number of
students struggling in the classes. It is possible that the more uniform distribution seen here were because such
retention efforts aided a large number of the students who might have fallen in the lower end, alleviating the
bimodal effect.

As a retrospective study using data from a specific sample of students, issues of generalizability are also a
natural concern. Further research should explore the influence of contextual and situational factors on student
performance across course sequences. Performance data ought to streamline the introductory computer science
course sequence to ensure students are being properly assessed and prepared for subsequent study.

REFERENCES
Ahadi, A., & Lister, R. (2013). Geek genes, prior knowledge, stumbling points and learning edge momentum: parts

of the one elephant? In Proceedings of the ninth annual international ACM conference on International computing
education research (pp. 123-128). ACM. https://doi.org/10.1145/2493394.2493416

Alturki, R. (2016). Measuring and Improving Student Performance in an Introductory Programming Course.
Informatics in Education, 15(2), 183-204. https://doi.org/10.15388/infedu.2016.10

Basnet, R. B., Doleck, T., Lemay, D. J., & Bazelais, P. (2018). Exploring Computer Science Students’ Continuance
Intentions to Use Kattis. Education and Information Technologies, 23(3), 1145–1158.
https://doi.org/10.1007/s10639-017-9658-2

Bornat, R. (2014). Camels and humps: a retraction. Retrieved on November, 2017 from
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf

Brown, J. D. (2014). Differences in how norm-referenced and criterion-referenced tests are developed and
validated? Shiken, 18(1), 29-33.

Burning Glass. (2016). Beyond Point and Click: The Expanding Demand for Coding Skills (pp. 1-12). Retrieved from
http://burning-glass.com/wp-content/uploads/Beyond_Point_Click_final.pdf

Caspersen, M. E., Larsen, K. D., & Bennedsen, J. (2007). Mental models and programming aptitude. In Proceedings
of the 12th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education (206-210).
New York, NY: ACM. https://doi.org/10.1145/1268784.1268845

Corney, M. W. (2009). Designing for engagement: Building IT systems. In ALTC First Year Experience Curriculum
Design Symposium. Queensland University of Technology, Brisbane.

Dehnadi, S., & Bornat, R. (2006). The camel has two humps. Middlesex University Working Paper. Retrieved on
November 2017, from http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

Dishman, L. (2016). Why Coding Is Still The Most Important Job Skill Of The Future. Fast Company. Retrieved from
https://www.fastcompany.com/3060883/why-coding-is-the-job-skill-of-the-future-for-everyone

Dunn, L., Parry, S., & Morgan, C. (2002) Seeking quality in criterion referenced assessment. In Learning Communities
and Assessment Cultures Conference, EARLI Special Interest Group on Assessment and Evaluation, University of
Northumbria, UK. Retrieved from http://www.leeds.ac.uk/educol/documents/00002257.htm

França, A. C. C., da Cunha, P. R., & da Silva, F. Q. (2010). The Effect of Reasoning Strategies on Success in Early
Learning of Programming: Lessons Learned from an External Experiment Replication. In 14th International
Conference on Evaluation and Assessment in Software Engineering (EASE). Keele University, UK.

Hartigan, J., & Hartigan, P. (1985). The Dip Test of Unimodality. The Annals of Statistics, 13(1), 70-84.
https://doi.org/10.1214/aos/1176346577

https://doi.org/10.1145/2493394.2493416
https://doi.org/10.15388/infedu.2016.10
https://doi.org/10.1007/s10639-017-9658-2
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf
http://burning-glass.com/wp-content/uploads/Beyond_Point_Click_final.pdf
https://doi.org/10.1145/1268784.1268845
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
https://www.fastcompany.com/3060883/why-coding-is-the-job-skill-of-the-future-for-everyone
http://www.leeds.ac.uk/educol/documents/00002257.htm
https://doi.org/10.1214/aos/1176346577

EURASIA J Math Sci and Tech Ed

7 / 7

Höök, L. J., & Eckerdal, A. (2015). On the bimodality in an introductory programming course: An analysis of student
performance factors. In Learning and Teaching in Computing and Engineering (LaTiCE), 2015 International
Conference on (pp. 79-86). IEEE. https://doi.org/10.1109/LaTiCE.2015.25

Kafai, Y., & Burke, Q. (2013). Computer Programming Goes Back to School. Phi Delta Kappan, 95(1), 61-65.
https://doi.org/10.1177/003172171309500111

Lister, R. (2010). Computing Education Research: Geek genes and bimodal grades. ACM Inroads, 1(3), 16.
https://doi.org/10.1145/1835428.1835434

Lung, J., Aranda, J., Easterbrook, S., & Wilson, G. (2008). On the difficulty of replicating human subjects studies in
software engineering. In Proceedings of the 30th International Conference on Software Engineering (ICSE ‘08).
New York, NY: ACM. https://doi.org/10.1145/1368088.1368115

Lye, S., & Koh, J. (2014). Review on teaching and learning of computational thinking through programming: What
is next for K-12? Computers in Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming
concepts held by novice programmers. Computer Science Education, 21(1), 57-80.
https://doi.org/10.1080/08993408.2011.554722

Ott, C., Robins, A., Haden, P., & Shephard, K. (2015). Illustrating performance indicators and course characteristics
to support students’ self-regulated learning in CS1. Computer Science Education, 25(2), 174-198.
https://doi.org/10.1080/08993408.2015.1033129

Patitsas, E., Berlin, J., Craig, M., & Easterbrook, S. (2016). Evidence that computer science grades are not bimodal.
In Proceedings of the 2016 ACM Conference on International Computing Education Research (pp. 113-121).
ACM. https://doi.org/10.1145/2960310.2960312

Qian, Y., & Lehman, J. (2017). Students’ Misconceptions and Other Difficulties in Introductory Programming. ACM
Transactions on Computing Education, 18(1), 1-24. https://doi.org/10.1145/3077618

Robins, A. (2010). Learning edge momentum: a new account of outcomes in CS1. Computer Science Education, 20(1),
37-71. https://doi.org/10.1080/08993401003612167

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A Review and Discussion.
Computer Science Education, 13(2), 137-172. https://doi.org/10.1076/csed.13.2.137.14200

Sadler, R. D. (2005). Interpretations of Criteria-Based Assessment and Grading in Higher Education. Assessment and
Evaluation in Higher Education, 30(2), 175-194. https://doi.org/10.1080/0260293042000264262

Thompson, C. (2018). The Next Big Blue-Collar Job Is Coding. WIRED. Retrieved from
https://www.wired.com/2017/02/programming-is-the-new-blue-collar-job/

Watson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. In Proceedings of the 2014
conference on Innovation & technology in computer science education (pp. 39-44).
ACM. https://doi.org/10.1145/2591708.2591749

Wray, S. (2007). SQ minus EQ can predict programming aptitude. In Proceedings of the PPIG 19th Annual Workshop,
Finland (Vol. 1, No. 3).

Zingaro, D. (2015). Examining Interest and Grades in Computer Science 1. ACM Transactions on Computing
Education, 15(3), 1-18. https://doi.org/10.1145/2802752

http://www.ejmste.com

https://doi.org/10.1109/LaTiCE.2015.25
https://doi.org/10.1177/003172171309500111
https://doi.org/10.1145/1835428.1835434
https://doi.org/10.1145/1368088.1368115
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1080/08993408.2011.554722
https://doi.org/10.1080/08993408.2015.1033129
https://doi.org/10.1145/2960310.2960312
https://doi.org/10.1145/3077618
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1080/0260293042000264262
https://www.wired.com/2017/02/programming-is-the-new-blue-collar-job/
https://doi.org/10.1145/2591708.2591749
https://doi.org/10.1145/2802752

	BACKGROUND
	Present Study

	CONTEXT: DESCRIPTION OF COURSES
	CSCI 110: Beginning Programming: Python
	CSCI 111: Foundation of Computer Science
	CSCI 112: Data Structures

	PARTICIPANT PROFILE
	ANALYSIS
	DISCUSSION
	LIMITATIONS AND FUTURE DIRECTIONS
	REFERENCES

